The Space Dynamics Laboratory (SDL) offers a full complement of space qualification services. Drawing on a 50-year heritage of instrumentation designed, built, and tested for space and upper atmospheric environments, SDL has the trained personnel and facilities for space simulation testing, contamination control services, and materials analysis.

Space Qualification Testing

EMI/EMC
SDL's radio frequency-shielded semi-anechoic chamber is available for emissions and susceptibility (EMI/EMC) testing of various electronic hardware and instruments per the MIL-STD-461E standard.

Characteristics
- Anechoic chamber
- 15'x11' working space

Test Capabilities (MIL-STD Specifications)
- Conducted emissions
- Conducted susceptibility
- Radiated emissions
- Radiated susceptibility

Thermal Vacuum
Thermal vacuum testing verifies spacecraft performance through environmental extremes in a simulated space environment. This is one of the most important environmental tests to perform for mitigating risks.

- Up to 8’ diameter chambers
- Automated control with safety interlocks
- Data acquisition systems
- -269° C to 150° C temperature range
- Outgassing diagnostic (RGA, QCM, scavenger plates)
- Special test chambers
 - Ultra high vacuum
 - Ion & neutral beam sources
 - Ion optics test facility

Vibration
SDL uses a UDC R24 vibration test system designed to provide reliable performance for medium and high force applications. The system is controlled by the UDC VWinn II vibration control/analysis workstation. This powerful vibration and shock controller is configurable for the advanced control and analysis required for engineering development.

- Sine-burst, force limiting & signal analysis
- Sine: 13,000 lbf (58 kN) pk
- Random: 12,500 lbf (56 kN) rms
- Classical shock: 25,000 lbf (111 kN) pk
- 5,000 lbs rating
- Slip table for 3-axis testing of large-volume payloads

Facilities Include
- Space simulation laboratory
- Environmental test facilities
- Precision cleaning laboratory
- 100 ft-long optical cleanroom
- ISO-5 – capable cleanrooms
- ISO-7 integration high bay with ISO-5 tents
- Cold-wall (LN2) thermal vacuum chambers
- Lifetime testing
- Thermal cycling
- Analytical chemistry & microscopy laboratories (cleanliness certifications)
CONTAMINATION CONTROL
SDL leads the industry in the application of contamination control theory and practice to the development of high performance electro-optical sensors. Pre-launch and on-orbit cleanliness requirements are derived from sensor performance goals and are implemented using state-of-the-art laboratory facilities.

A preventive approach to controlling contamination entails planning and implementation throughout all project phases. Effective contamination control begins at the study phase and continues through manufacture, integration, test, launch, and on-orbit operations to meet end-of-life performance requirements.

MODELING
- Spectral response
- Particulate fallout
- On-orbit degradation
- Spacecraft charging

MATERIALS CHARACTERIZATION
- ASTM E595 (%TML & %CVCM)
- ASTM E1559 (outgassing kinetics)
- Thermal gravimetric analysis
- X-ray fluorescence screening
- Microscopy lab

CLEANLINESS CERTIFICATIONS
- ISO 14644-1 (cleanrooms)
- IEST-STD-CC1246D (sample analyses)
- Outgassing & offgassing analyses
 - Quartz crystal microbalances
 - Infrared spectroscopy
 - Mass spectrometry

NANOSAT OPERATION VERIFICATION AND ASSESSMENT (NOVA) TEST FACILITY
SDL’s advanced NOVA test facility characterizes and verifies subsystem and system performance of small satellites up to 24 kg. The NOVA test facility provides testing to reduce preflight risk and verify requirements and is designed specifically for CubeSat-sized components and systems. NOVA augments SDL’s manufacturing, environmental testing, and calibration facilities, offering comprehensive testing capabilities and expertise for this class of small satellites.